Potentials and challenges of biogas from fish industry waste in the Arctic

Pernille Erland Jensen

Arctic Technology Center
Department of Civil Engineering
Technical University of Denmark.
Content

• Introduction
• Why make biogas in the Arctic?
• Why is it not done already?
• Biogas potential of fish residues and organic waste
• Perspective
Present challenges

Fish industry residuals
- Major part disposed off at sea
- Oxygen depletion at seafloor
- Methane emission

General waste
- Organic household waste
- Sludge from wastewater treatment
- Bag toilet and septic tank content

Can we make the anaerobic digestion happen under controlled conditions, collect biogas and utilize the energy?
Envisioned challenges

Simplified overview of anaerobic digestion process

- Shrimp, crab: Protein → Ammonia → Inhibition
- Halibut: Lipids → Inhibition of methane
- Cold, changing climate
- Lack of local specialists
- Seasonal shift in loading material and rate

Complex polymers
Proteins, Polysaccharides etc.

Fermentative bacteria

Proteins

Long chain fatty acids

Fermentative bacteria

H₂ + CO₂

Acetogenesis

Acetate

CO₂ reducing methanogens

CH₄ + CO₂

Acetotrophic methanogens

Potentials and challenges of biogas from fish industry waste in the Arctic
Biogas plants

Can be very simple installation or highly industrialized optimized plant.
Biogas use

- Electricity – requires large scale plant + energy conversion
- Vehicles – biogas from vegetable products, requires upgrading of gas
- Heat or cooking – can be used directly
 - Simple technology for use of gas to e.g. heat water for boiling of shrimps or heating of buildings
Low temperatures
Slower – higher retention time – larger tank

Lower risk of inhibition and instability at mesophilic conditions

<table>
<thead>
<tr>
<th>Thermal stage</th>
<th>Process temperatures</th>
<th>Retention time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychrophilic</td>
<td>< 20ºC</td>
<td>70 – 80 days</td>
</tr>
<tr>
<td>Mesophilic</td>
<td>30 – 42 ºC</td>
<td>30 – 40 days</td>
</tr>
<tr>
<td>Thermophilic</td>
<td>43 – 55 ºC</td>
<td>15 – 20 days</td>
</tr>
</tbody>
</table>
Methane potential

Literature values, thermophilic

Our measurements, mesophilic

Potentials and challenges of biogas from fish industry waste in the Arctic
Methane potential

Potentials and challenges of biogas from fish industry waste in the Arctic
In Sisimiut

> 80% of energy used for heating at shrimp processing plant
Hygienization of blackwater

Anaerobic Mesophilic incubation Aerobic

Potentials and challenges of biogas from fish industry waste in the Arctic
Other options

• Shrimp flour
 – Local experience
 – Low price
 – Only shrimp residuals
• Bio oil
 – Only halibut
• Chitin
 – Advanced processing
• Food for fish farming?
• Food for dogs?
Conclusions and outlook

- Fish and seafood by-product do have significant biogas potential.
- Risk of instability of process due to high lipid and protein content, change in temperature, seasonal variations in loading, lacking of local experts.
- Mesophilic conditions may help stabilize process + reduce need of heating/insulation.
- Mixing with organic food waste, sludge and/or algae may help stabilize process + solve mutual waste challenges – needs to be investigated.
- Knowledge exists for operation, but innovation is needed prior to successful implementation.
Questions